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Debate currently exists in the mathematics education community 
as to the extent that students’ needs are being met. Typically, 
the needs of academically advanced students are not a focus of 
this discussion. A concern for students of advanced academic 
capabilities is whether or not sufficient challenge exists to for-
ward genuine understanding of mathematics. Despite Trends in 
International Mathematics and Science Studies (TIMSS) data 
(Gonzales et al., 2004; National Center for Educational Statistics, 
2009), which indicate that eighth-grade mathematics students do 
not fare well internationally, fourth-grade mathematics students 
appear to compete well with peers from other countries on these 
standardized assessments. However, these data provide a picture 
of how American students in general are performing, but it does 
not provide insight with respect to how well or poorly students 
of advanced academic capabilities are being served. In short, the 
skills and abilities of advanced students may often be poorly mea-
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Several decades ago, V. A. Krutetskii conducted a multiyear study to 

investigate the various types of thinking that academically advanced, or 

as he called them, gifted mathematicians used. Following an in-depth 

look at Krutetskii’s nine ways of thinking, a model is proposed that 

will provide direction for teachers in selecting problems. The model is 

comprised of four levels of mathematical tasks. Level 1 is mathematical 

exercises, Level 2 is word or story problems, Level 3 is mathematical 

problems, and Level 4 is authentic mathematical problem-solving tasks. 

Subsequently, an elaboration of high- and low-level tasks is applied 

to the four-level model. Consistent with Krutetskii’s theory, the sugges-

tion is then made that approximately 1⁄3 of the curricula for students of 

advanced intellect in mathematics should be comprised of Levels 1 and 

2 tasks, 1⁄3 should be comprised of Level 3 tasks, and 1⁄3 should be 

comprised of Level 4 tasks. Three implications are offered for teachers 

and four are offered for researchers. The first implication is that teachers 

must carefully scrutinize their curriculum to see that it meets the needs 

of all students, including academically advanced students. The second 

implication is that conceptual (deep) understanding of algorithms can 

be attained through the use of mathematical problems and authentically 

challenging tasks. The third implication is that teachers are not likely to 

have a database of problems that represents all levels if they use only 

the provided textbook. Researchers and educators should be reminded 

that additional time and effort is necessary to empirically research the 

proposed theory. Moreover, authentically challenging tasks, such as 

Model-Eliciting Activities, should be used with students, and they could 

be used for assessment. 
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sured in such assessments. Hence, the question remains: Are our 
most capable students being adequately served in the elementary 
mathematics classroom?

This paper provides a discussion of how academically advanced 
mathematics students think. Subsequently, the paper proposes a 
model or typology for classifying mathematical problems as well 
as a theory regarding what types of problems should be used with 
academically advanced students. To conclude the paper, a type 
of activity known as Model-Eliciting is discussed, as it has been 
used extensively with academically advanced students. 

Literature Review

Vadim A. Krutetskii conducted arguably the most compre-
hensive study of students who possessed advanced mathematical 
abilities. During his study, situated in what was then the Soviet 
Union, Krutetskii (1976) studied and observed students through 
the use of quantitative and qualitative methods. He compared 
academically advanced students to average students in an attempt 
to identify the types of thinking that each exhibited. His intent 
was to see how academically advanced students’ thinking var-
ied from typical peers’ ways of thinking. Throughout his studies, 
he was often criticized for using qualitative methods, but this 
approach ultimately grew to be widely recognized many decades 
later in the field of educational psychology. Moreover, given 
the high degree of scrutiny that qualitative research endured, 
Krutetskii invested great effort in designing the experiments to 
increase the likelihood that they were highly systematic.

Among the many pieces of data and conclusions to come out 
of Krutetskii’s (1976) studies were nine ways of thinking that 
academically advanced students possessed that were not possessed 
by average peers. One caveat is that almost no students possess 
all nine ways of thinking. In fact, one prospective measure for 
assessing the level of giftedness of students is to identify the level 
of expertise in the nine ways of thinking in mathematics. The 
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nine ways of thinking in mathematics are listed below and are 
detailed in the subsequent sections:

 • ability to formalize mathematical material,
 • ability to generalize mathematical material,
 • ability to operate with numerals and symbols,
 • ability to use sequential and logical reasoning (used often 

in proofs and deductions),
 • ability to curtail,
 • ability to reverse mental processes,
 • ability to think flexibly,
 • ability to use mathematical memory, and
 • ability to work with spatial concepts.

Ability to Formalize Mathematical Material

The ability to formalize mathematical material speaks of 
one’s potential to carefully analyze the structure of mathemati-
cal problems and to create perceptions based on the structure of 
the problems. As an example, students may be presented with 
the task (Krutetskii, 1976), “What, if any, difference exists in the 
two expressions: (a – b)3 and a3 – b3?” (p. 236). Individuals with 
advanced capabilities in formalizing mathematical material will 
come to the realization that there is a distinct difference in the 
form of the two expressions and perhaps expand them for proof. 
When doing problems, interchanging the two expressions can 
have significant ramifications on the final answer. 

Ability to Generalize Mathematical Material

The ability to generalize in mathematics speaks of one’s 
potential to know where and when to apply information to a 
solution. In any event, one must have the ability to take previ-
ously learned material and apply it to novel situations. In a man-
ner of speaking, this ability alludes to transfer and the ability to 
reason deductively in mathematics. As an example, students in 
Krutetskii’s (1976, p. 241) work were asked to multiply (C + D + 
E) ∙ (E + C + D) without having an actual algorithm or specific 
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process to successfully solve the problem. Knowing that a process 
to multiply trinomials was not presented in class, but that the pro-
cess for multiplying binomials had previously been presented, the 
observer was seeking to identify whether or not participants could 
modify, or generalize, the process for binomials to trinomials.

Ability to Operate With numerals and Symbols

The third ability, to operate with numerals and symbols, aligns 
closely with the National Council of Teachers of Mathematics 
(NCTM, 2000) process standard of representation and the con-
tent standard of number sense and operations. Individuals who 
operate with great aplomb and effortlessness while working with 
numerals and symbols are the focus of this section. The process 
standard of representation refers to one’s ability to move fluently 
through various representations in mathematics. As an elemen-
tary example, numbers can be represented in three principal ways: 
pictures, words, and symbols.

 .  .
   .   five, cinco  5, V 
 .   .

An individual’s ability to work automatically between the 
three representations in numbers is indicative of one’s mathe-
matical abilities. The example of number representation is but one 
example of representation as they abound in mathematics. As an 
example, there are four common representations in algebra: text, 
graph, table, and equation (Van Dyke & Craine, 1997).

Ability to Use Sequential and Logical Reasoning 

The ability to use sequential and logical reasoning speaks of 
one’s ability to place items in sequential order and to realize order 
of events. Regarding logic, there are many applications in math-
ematics. In elementary grades, a concrete example of logic comes 
in the realm of set theory in which one may be forced to realize 
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that if C is a subset of B and B is a subset of A, then C must, by 
definition, be in the larger set of A. For instance, 

Statement 1: Set A contains all great free throw 
shooters (> 90%) in NCAA basketball.

Statement 2: All students from school B are great (> 
90%) free throw shooters.

Statement 3: Athlete C is from school B.
Statement 4: Therefore, student C is a great free throw 

shooter or in the larger set of A.

This may seem like a trivial example. However, this logic can 
be applied in myriad ways in mathematics. As an example, this 
sort of logic may be used with proofs in geometry to make gen-
eralizations about the properties of geometric shapes. Hence, the 
ability to reason sequentially and logically has ostensibly endless 
applications to mathematics.

Ability to Curtail

The ability to curtail speaks of one’s ability to shorten certain 
processes in an attempt to make the solution more efficient than 
it otherwise might have been had the entire process been written. 
Unlike mathematicians who may be intuitive and not capable of 
explaining why certain steps were chunked together, in curtail-
ment, advanced mathematicians can expand the shortened pro-
cess when asked to do so. One aspect of curtailment that is quite 
interesting is that it does not often come immediately upon seeing 
a problem posed. Curtailment often comes about as a result of 
seeing a process completed on several occasions and subsequently 
realizing that curtailment is more efficient than doing the entire 
process. This is no different than realizing that a shortcut will 
get one to work quicker than the longer route. When asked to 
take the longer route, the driver can still complete it although 
the driver may realize the inefficiency in the expanded route. A 
mathematical example of curtailment is: 
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Problem 1: (x2 + 8x + 16) = 0
 (x + 4) (x + 4)
 x = –4

Problem 2: (8x2 + 64x + 128) = 0
 x = –4

The student with advanced curtailment capabilities has realized 
that the second equation is the same as the first equation, but 
scaled up by a factor of 8. Hence, the student skipped the factor-
ing because the same problem had just been presented, and it 
would have been highly inefficient to write out all of the steps. 

Ability to Reverse Mental Processes

The ability to reverse mental processes refers to working back-
ward to find an answer in problem-solving mode. However, that 
is not the only use of reversing mental processes. One’s ability to 
reverse a train of thought in mathematics has great implications 
for one’s ability to think flexibly. Krutetskii (1976) described the 
ability to reverse one’s thought process with a diagram of logic. 
Average students are often capable of thinking in the way that the 
teacher described (A→B), which could be considered somewhat 
linear in nature. However, more advanced students hold capabili-
ties that average students do not. With respect to reversibility of 
thought, advanced students may be inclined to see mathemati-
cal procedures in more than one way (e.g., A↔B). A practical 
example of this could be in the computation of an arithmetic 
mean. Average students might be able to see that to compute this 
measure of central tendency one first adds up all numbers in the 
series and then divides that number by the number of entries in 
the series. However, more advanced students could complete the 
aforementioned procedure, but simultaneously be able to identify 
the number necessary for a specific mean (e.g., find N when 78 + 
83 + N + 96 has a mean, , of 85).
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Ability to Think Flexibly

Closely related to the ability to reverse mental processes is the 
ability to think flexibly. In fact, the two capabilities are difficult 
to disentangle in certain instances. One’s ability to think flexibly 
pertains to many things such as the ability to look at an authentic 
problem-solving task in more than one way. For instance, given 
a set of data for three airlines, 30 days worth of data, and asked 
to find the one with the greatest likelihood of being on-time, a 
purposefully vague term, some students will choose to use the 
content area of data analysis and probability. Simultaneously, 
other students will seek to use a number sense and operation 
perspective. Particularly advanced students may find either 
approach acceptable and ultimately identify the approach that 
is most efficient to them. Technically, Krutetskii (1976) defined 
flexibility in thinking as, “An ability to switch from one mental 
operation to another; freedom from the binding influence of the 
commonplace and the hackneyed. This characteristic of thinking 
is important for the creative work of a mathematician” (p. 88). 
The final notion in this statement is significant. For mathemati-
cians who are creative, this component is requisite. Moreover, 
Krutetskii asserts that mathematicians, who truly appreciate the 
aesthetics of mathematics, often have a high degree of flexibility 
in thinking. Pragmatically speaking, individuals who are high in 
flexibility in thinking are not constrained to the single approach 
that the teacher has provided during class instruction. 

Ability to Use Mathematical Memory

Similar to the ability to think flexibly, the ability to use math-
ematical memory has implications for mathematical problem 
solving. In specific, the ability to use mathematical memory is 
used in reference to one’s ability to call on long-term and short-
term memory (Miller, 1956). One’s ability to use mathematical 
memory deals with the ability to memorize formulae, num-
bers, and significant material to solve mathematical problems. 
A simplistic example of one’s ability to retain numbers could be 
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a situation in which a number needs to be carried over from 
one procedure to the next for comparison. The mathematically 
capable or alert student with a high ability to memorize numbers 
may not have to revert to a written down number or may not be 
forced to look up a formula for the subsequent computation. An 
underlying asset is involved with the ability to use mathematical 
memory. When low-level procedures need to be completed (e.g., 
the computation of a standard deviation), a substantial capacity 
for memory can alleviate cognitive demands on problem solvers 
thus creating additional cognitive energy for high-level tasks such 
as self-monitoring. As such, a high capacity for mathematical 
memory can serve aspiring mathematicians well in situations that 
demand higher level functioning.

Ability to Work With Spatial Concepts

The ability to work with spatial concepts is similar to the 
notion of understanding space in mathematics. Some individuals 
have a greater capacity than others to work with spatial concepts. 
It is ostensibly the case that these individuals are geometers. 
However, this is not the only application of spatial reasoning. 
Individuals with an advanced ability to reason spatially will typ-
ically perform well in the NCTM (2000) standard known as 
measurement, since it has many demands related to assigning a 
value to two- and three-dimensional figures. Krutetskii (1976) 
also stated that individuals with advanced spatial reasoning capa-
bilities might have a particular aptitude for engineering.

A Final Caveat

It is not the case that all advanced students will be equally 
adept in all of the nine areas. One way to consider giftedness 
in mathematics is to assess students to see where they are on 
the continuum in all areas. Naturally, a student who has strong 
aptitudes in several areas would be stronger than a student who 
has a similar aptitude in only one area. Moreover, the extent to 
which one has an aptitude in an area speaks of the level of gift-
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edness as well. For instance, if one is assessed and is identified 
as having the greatest aptitude seen in the area of memory, the 
pupil may be a prodigy despite having few capabilities in the other 
areas. To date, no formalized instruments have been validated 
that use Krutetskii’s (1976) theory as a basis. This would be a 
valuable addition to the field of mathematics. Moreover, such 
an instrument might provide direction for curriculum develop-
ers who identify activities that promote mathematical talent and 
development.

Activities That Promote Mathematical 
Talent and Development

The question remains: What type of activities promote deep 
mathematical understanding for academically advanced math-
ematics students? An ongoing debate for several decades pertains 
to the extent to which low-level relative to high-level activities 
should be used. A follow-up question is, to what extent will low-
level activities help academically advanced students develop in 
light of Krutetskii’s nine areas of thinking? Advocates of either 
position exclusively may be well-served with a dose of moderation. 
For instance, Lee and Tingstrom (1994) and Woodward (2006), 
advocates of low-level activities or so-called drill-and-practice in 
mathematics, suggested that repeated exposure to mathematical 
procedures produce automaticity. They are correct, but increased 
levels of automaticity precipitates the question: At the expense of 
what? In essence, many mathematics educators question whether 
or not the gains in automaticity (procedural understanding) are 
worth the decreased attention to conceptual understanding. 

Conversely, advocates of high-level activities (Hiebert & 
Wearne, 1993; Stylianides & Stylianides, 2008) clamor for an 
exclusive exposure to high-level activities, such as authentic prob-
lem-solving tasks. The rationale provided for this approach is that 
when students are engaged in authentic problem-solving activi-
ties, they have access to high- and low-level tasks because doing 
mathematical problem-solving tasks requires students to do low-
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level procedural tasks to reach the ultimate goal of successfully 
solving the mathematical problem-solving task. Their opponents 
question the extent to which students have access to procedural 
tasks and often complain that it is not adequate exposure. 

NCTM (2000) suggested that a balance needs to be reached 
between the two extremes. Specifically, it suggested that concep-
tual understanding and procedural skill knowledge (Davis, 2005; 
Rittle-Johnson, Siegler, & Alibali, 2001) should be fostered with 
young mathematicians. Furthermore, they suggest that teach-
ing for understanding (Hiebert et al., 1997; Wood, Merkel, & 
Uerkwitz, 1996) is a requisite responsibility of mathematics edu-
cators. To fully understand what by-products are precipitated by 
mathematical tasks, a taxonomy for these tasks may be helpful.

Review of Various Types of 
Mathematical Problems

To gain a deep understanding of the types of problems nec-
essary for academically advanced students in mathematics, it is 
imperative to comprehend the spectrum of mathematical problems 
that exist. Before this is done, the caveat is issued that mathemati-
cal problem solving could safely be considered a construct. Hence, 
it is virtually impossible to have the field of mathematics educa-
tion come to agreement regarding a categorization of all types of 
mathematical tasks, and it may be even more difficult to have the 
field come to agreement on one definition of mathematical prob-
lem solving. Through the use of the Delphi technique, which is a 
qualitative method designed to seek consensus amongst experts 
on a topic or construct, it was ascertained that some consensus on 
the concept of mathematical problem solving exists (Chamberlin, 
2008). In a Delphi study, qualitative data from experts is solicited, 
and it is then turned into quantitative items in which the same 
group of experts has the opportunity to rate the comments through 
a Likert scale (Chamberlin, 2008). Subsequently, a model proposed 
by Chamberlin, Rice, and Chamberlin (2009) is explicated in the 
forthcoming section in an attempt to provide curricular guidance in 
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decision making for educators of academically advanced mathema-
ticians. This model was derived after an analysis of mathematics 
curricula in grades K–6 and, like many models, consensus has not 
been reached by the mathematical education community on it. The 
model is provided in Table 1. 

Exercises

Despite efforts to increase the percentage of mathematical 
problem-solving tasks in elementary curricula in the United 
States, it may be common to see an abundance of mathematical 
exercises done in a typical elementary mathematics classroom. In 
fact, when parents do not see a great quantity of mathematical 
exercises assigned to their children each night, some may become 
concerned because that their children are not doing mathemat-
ics as per their perception. Their concern rests in the notion that 
doing mathematics is comprised of doing multiple computa-
tions to gain familiarity with algorithms or procedures. Adults 
not involved in careers in which mathematics is used regularly 
may be inclined to view mathematics as a set of unrelated rules 
or procedures as well as skills and knowledge that is optimally 
learned through rote memorization (Costello, 1991). Examples of 
tasks that lend themselves to refining skills through mathemati-

Table 1

Model-Eliciting Activities
Level Name Grade Four Example as Task Statements

Level 1 Exercises 478 ÷ 24

Level 2 Word or story problems J. C. had four apples and Jerome gave 
him three more. How many does he 
have now? 

Level 3 Mathematical problems Add the numbers 1 to 73 and tell me 
what the last two numbers are. 

Level 4 Authentic mathematical 
problem-solving tasks

Using the data presented, identify the 
best cell-phone plan for your needs 
and write a rationale for why you have 
selected it. 
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cal exercises in the elementary grades are addition and its inverse 
operation, subtraction, and multiplication and its inverse opera-
tion, division. As children age, some exercises may involve more 
than one computation. As an example, to compute an arithmetic 
mean, one must add up all of the points in a data set and divide 
by the number of entries. Successful computation of an arithmetic 
mean therefore requires addition and division (more than one 
mathematical procedure). After a few attempts, the computa-
tion of an arithmetic mean is nothing more than a mathematical 
exercise. Similarly, regurgitating information on an assessment, 
such as the identification of shapes and their respective names, 
is merely an exercise as success in such an endeavor is predicated 
on rote memorization. It is important to remember that exercises 
should not be eliminated from mathematical curricula completely 
as they have a distinct purpose that will be discussed later in the 
article. In elementary grades, exercises are predominantly used 
in the field of arithmetic, which the NCTM (2000) refers to as 
number sense and operations. 

Word or Story Problems

A word problem or a story problem can most easily be 
described as a mathematical exercise surrounded by text. It may 
be common for educators of the academically advanced to perceive 
word problems as actual mathematical problem-solving tasks and 
therefore to presume that cognitive demands are adequate for stu-
dents. However, assuming students do not have reading difficul-
ties that significantly impede comprehension, word problems do 
not pose additional cognitive demands on students that exercises 
do. Students simply seek key words, identify the numbers, and 
execute the operation. Interestingly enough, in some instances 
the use of key words may ultimately prove detrimental to success 
in solving word or story problems (Clement & Bernhard, 2005). 
As with mathematical exercises, success in solving word or story 
problems typically involves a great deal of automaticity. That is to 
say, for success in the mathematical operation, very little cogni-
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tion actually occurs rather than simply recalling a formula or a 
fact and executing it with the provided numbers or data.

Mathematical Problems

Unlike exercises and word or story problems, mathematical 
problems actually involve students engaging in cognition in a 
novel situation. In regards to the term novel, one may consider 
the notion that students are expected to derive a model or a solu-
tion to solve the problem although they have not been provided 
with one (i.e., a model or solution) explicitly prior to the task. The 
word explicitly is used because students have the knowledge to 
solve the problem from past mathematical experiences. However, 
no set formula was pronounced as the solution process to the 
problem prior to its introduction. Hence, a sense of novelty exists 
in mathematical problems. The significance of novelty is a com-
ponent that should not be overlooked in mathematical problems 
(Chamberlin, 2008). As a counterexample to novelty, when 30 
mathematical (identical) exercises are provided as homework with 
the objective of refining mathematical skills, no novelty exists 
after two to three problems. Similarly, attaching text to a rou-
tine mathematical exercise only makes a word or story problem. 
Further, mathematical problems are ones that require multiple 
steps and success in them is not solely predicated on automatically 
recalling information such as facts, skills, knowledge, procedures, 
or formulae. Academically advanced students in mathematics 
may desire novelty simply for challenge, but it has been shown 
that students in the general population often avoid novelty as 
it often creates increased anxiety and increased risk for failure 
(Middleton & Midgley, 2002; Turner et al., 2002). 

Authentic Mathematical Problem-Solving Tasks

Authentic mathematical problem-solving tasks are consid-
ered, by some, to be the highest level of cognitive challenge for 
students of all levels and abilities (Lesh & Zawojewski, 2007). 
This is, of course, with the exception of highly theoretical math-
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ematical problems that may be encountered well beyond instruc-
tion in primary and secondary schooling. Some students may 
not be capable of solving these tasks, and others, not always the 
academically advanced incidentally, may be successful in solving 
such tasks. One main difference exists in mathematical problems 
and authentic mathematical problem-solving tasks. Authentic 
mathematical problem-solving tasks have a context that has a 
high degree of realism as opposed to mathematical problems, 
which may or may not have a context at all. In the event a math-
ematical problem has a context, it may not be described as well 
as an authentic one or the context is somewhat contrite. As a 
result of the realistic nature of authentic mathematical problem-
solving tasks, students may be inclined to report a higher level 
of affect on authentic mathematical problem-solving tasks than 
they would on mathematical problems. Practically speaking, a 
high level of affect may translate to greater student interest and 
persistence in tasks, an identification of great value in the prob-
lem, and enhanced self-efficacy in doing the problem. 

Balance of HOT and LOT Tasks

 Bloom (1956), in his cognitive taxonomy, stated that six lev-
els of cognition existed. Although some debate exists regarding 
which are higher and which are lower, it is generally agreed that 
the first two to four levels are lower and the final three to four are 
higher. In the context of this paper, however, the reader should 
think about LOT and HOT as not exactly dichotomous terms, 
but as resting on a continuum.
 LOT tasks are those on which the problem solver pulls from 
previously memorized information. This is often referred to in 
the field of psychology as the process of automaticity, meaning 
the problem solver automatically solves the problem without overt 
cognition. HOT tasks are those on which the problem solver 
needs to engage in cognition to successfully solve the problem. 
HOT tasks also have some degree of self-regulation in monitor-
ing the level of success in problem solving.
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On the surface, some mathematics educators may suggest 
that academically advanced students should engage exclusively in 
authentic mathematical problem-solving tasks. This decision could 
prove detrimental to the development of academically advanced 
students in mathematics as they need to have a mix of low- and 
high-level skills. With a typical curriculum in the U.S., proficiency 
in low-level tasks is not a concern as it may be the predominance of 
activities (Chamberlin et al., 2009). Examples of low-level activi-
ties such as worksheets, flash cards, computer software designed 
to enhance drill-and-practice ability, as well as timed tests may 
help students polish what are known as “math facts” and these are 
quite prevalent. High-level tasks, such as authentic mathematical 
problem-solving activities, often prove the more difficult undertak-
ing in elementary mathematics classrooms due to time required to 
implement them (Hiebert & Wearne, 1993) and their accessibil-
ity (Stylianides & Stylianides, 2008). It is important to note that 
basic exercises need not be the same for academically advanced 
students as they are for peers in the general population; they can 
increase in difficulty a great deal. Moreover, it should not be the 
case that more of the same activity is assigned to advanced stu-
dents. Educators need to invest significant time in differentiation 
of curriculum with academically advanced students so that they 
can be challenged with exercises. As an example, if first-grade 
students are busy memorizing their addition facts, academically 
advanced students may be working on their multiplication facts or 
even learning about roots or radicals. 

Perhaps the most compelling reason why a balance of activi-
ties must be sought is so problem solvers will have sufficient cog-
nitive energy to successfully solve complex mathematical tasks. 
Cognitive energy has also been referred to as mental energy 
(Lykken, 2005). Cognitive energy works in much the same 
way that metabolic energy does. Each person possesses a finite 
amount of each type of energy during a finite period of time. 
Metabolic energy is measured by the number of calories that 
one can expend. Neuropsychologists who are interested in cog-
nitive energy, however, have not devised a method to quantify 
expenditures in cognitive energy (Lykken, 2005). Nevertheless, 
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the principle can be applied to each type of energy. The more 
energy that one expends in an activity, the less energy is avail-
able to expend in another activity. As an example, a fourth-grade 
academically advanced mathematician is doing a problem such 
as Departing On Time (see http://crlt.indiana.edu/research/csk.
html). During this task, the student needs to donate significant 
cognitive energy to computing measures of central tendency such 
as mean, median, and mode, due to a lack of automaticity or 
understanding of algorithms. As a result of the significant time 
donated to compute the measures of central tendency, the student 
is less able to donate significant energy to metacognitive func-
tions that are higher level and may help the student successfully 
execute tasks such as identifying the most appropriate answer, 
making sure the solution is the most efficient one, and/or staying 
on task. When a hiatus in concentration occurs, it may be a result 
of a lack of cognitive energy. Hence, enabling students to reach 
automaticity with ostensibly elementary math facts or operations, 
such as addition, subtraction, multiplication, and division, may 
enable students the opportunity to invest increased amount of 
cognitive energy to more demanding tasks. Curricula therefore 
should have a balance of tasks with low- and high-level demands. 
The word balance is not intended to suggest a 50 (LOT) and 50 
(HOT) mixture.

Optimal Percentage of HOT and LOT Tasks

Given this information, a more precise question and a logical 
concern is the amount of time that should be invested in respec-
tive LOT and HOT tasks. Making a blanket statement for all 
classroom teachers and academically advanced students would be 
arrogant and presumptuous. One answer will not suffice for the 
needs of all learning situations. However, some generalizations 
could prove beneficial for educators of academically advanced 
students in mathematics. The first two levels should receive no 
more than 33% of the curriculum emphasis in the elementary 
grades. Because the two tasks are extremely similar in nature, 
it is not important to seek a quantitative value for each type of 
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task. Exercises or word or story problems should not be neglected 
exclusively, but teachers may find exercises to be a more efficient 
use of time given the low-level nature of word or story problems. 
Fundamentally, word or story problems are simply exercises dis-
guised with words. As such, being able to decode math problems 
from text is an important responsibility of burgeoning math-
ematicians, but text may slow down the progress of intellectually 
advanced students in doing a series of problems when the goal 
is automaticity. The idea of using low-order thinking tasks as no 
more than 33% of the curriculum is based on Krutetskii’s (1976) 
notion that students of promise learn and memorize mathemati-
cal facts at a faster rate than their peers. Ergo, given the fact that 
promising students learn or memorize at a quicker pace than 
peers, it may be logical to minimize the use of such activities so 
that additional efforts and time may be donated to more academi-
cally challenging and engaging activities. In the end, increasing 
the emphasis on HOT activities provides academically advanced 
students with a realistic portrait of what actual mathematicians 
do in their vocation. 

With approximately 33% of the curriculum invested in low-
level activities, approximately 67% of the remaining curriculum 
can be invested in mathematical problems and authentic math-
ematical problem-solving tasks, which could be divided evenly 
between the two emphases. A simple way to think about the 
allocation of LOT and HOT tasks in mathematics is that one 
third of math work could be invested in exercises and word or 
story problems, one third could be invested in mathematical prob-
lems, and the final one third could be invested in authentic math-
ematical problem-solving tasks. The principal reasons for such 
emphases are that the final two types of tasks engage students in 
HOT and they mimic what real-life mathematicians do. Richard 
Lesh and colleagues (2000) referred to activities such as engag-
ing students in precollege-level mathematics, and they suggest 
that Model-Eliciting Activities (MEAs) are examples of such 
activities. MEAs are activities that ask students to create models 
to explain mathematical phenomena. They were initially created 
for use with general population students and have since been 



www.manaraa.com70 Journal of Advanced Academics

PROBLEM SELECTION

adopted and adapted for gifted students in mathematics. Several 
publications exist in which the use of MEAs is discussed with 
academically advanced students (Chamberlin, 2002; Chamberlin 
& Moon, 2005, 2008; Sriraman, 2005). Because Model-Eliciting 
Activities have shown great promise in educating academically 
advanced students, a close analysis of their structure may sug-
gest that they match closely with the nine ways of thinking that 
Krutetskii (1976) identified. 

Implications

Teachers Must Take a Close Look at Curricula in Use

Teachers may choose to alter the proposed model to fit their 
needs. Nonetheless, teachers are likely to find the model quite 
applicable to their classroom as it has been designed from litera-
ture, textbook analysis, and classroom experience. 

As such, the first implication is that teachers and parents 
need to closely scrutinize the adopted curriculum for students or 
children of advanced intellect in mathematics. Acceptance from 
the textbook adoption committee is not insurance that needs of 
academically advanced students in mathematics will be met. It 
is quite probable that an overreliance on low-level tasks, such as 
exercises and word or story problems, is inherent in the curricu-
lum. This may be the result of textbook companies writing texts 
to prepare students for state standardized tests. Such tests are 
helpful in assessing the majority of students, but their use with 
academically advanced students has not been empirically tested. 

Further, having a strong knowledge of mathematical facts is 
rarely criticized unless it comes at the expense of having HOT 
skills. In other words, some practice with mathematical problem-
solving tasks is requisite to be able to do them successfully in the 
future. Ergo, students must be provided with serious challenges 
that enable them to utilize HOT skills. Without significant 
access to HOT tasks, the potential by-product is that academi-
cally advanced mathematics students may be inclined to become 
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bored; have negative affect, such as attitude, interest, and value 
about mathematics; and become disengaged and less persistent 
with excessive exercises and word problems (Chamberlin, 2002). 
When negative affective ratings are maintained for extended 
periods of time, such as several months, temporary emotions run 
the risk of becoming permanent. One less-than-capable math-
ematics instructor for a year may permanently damage an aspiring 
student’s mathematics affect for life. 

Conceptual Understanding of Algorithms and 
Authentically Challenging Tasks Are needed

One of the most influential and pragmatic books for math-
ematics educators was written near the end of the last millennium 
(Hiebert et al., 1997). In this publication, Hiebert and colleagues 
(1997) stressed the notion of making sense of mathematics. This 
would appear to be an emphasis of all mathematics classrooms, 
although reality may prove otherwise. How does one not con-
centrate on making sense of mathematics? This can be done by 
simply concentrating on the algorithms without any concern for 
why they work as they do. This may be a familiar tactic to teachers 
with poor content knowledge. When “why” questions are used, 
the true meaning of mathematics may surface. Consequently, 
if academically advanced mathematicians are to be challenged 
in mathematics, it is incumbent upon mathematics teachers in 
elementary grades to help students consider why certain proce-
dures have been accepted by the mathematics community as the 
most efficient method available. 

Mathematics Textbook Tasks May not Suffice

Perhaps the teaching method that requires the least effort is to 
open the textbook and use the problems for the lesson. However, 
many elementary textbooks may not have a satisfactory num-
ber of authentically challenging tasks for students of advanced 
academic capabilities, although some exceptions appear to exist 
(Chamberlin et al., 2009; Stlyianides & Stlyianides, 2008). These 
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textbooks may not even have authentically challenging tasks for 
students in the general population. Elementary math textbooks 
may be a compilation of exercises and word problems, which are 
very helpful if the objective is to hone low-level skills. Despite 
what is advertised and printed in books, legitimate mathematical 
problem-solving tasks may be sparse in elementary math text-
books. For this reason, teachers of academically advanced stu-
dents may need to look elsewhere to find resources to genuinely 
challenge students.

Areas for Future Research

All theories must be tested at one time or another. To that 
end, the proposed levels are simply proposed levels until and 
unless researchers test the theory. Actual data must be solicited 
to see if the levels are theoretically sound. This could be done 
in several manners, and perhaps the most expeditious of these 
approaches would be to conduct a Delphi study to seek input from 
experts in mathematical curricula. 

Given the fact that no formalized instrument for use with 
academically advanced students has been created with Krutetskii’s 
(1976) theory as a basis, this too would be an area for future 
research. Such an instrument could aid the field of mathematics 
education greatly in understanding academically advanced stu-
dents. In addition, it would provide a venue for systematically 
identifying academically advanced mathematicians with a for-
malized instrument. 

In addition, the link between Model-Eliciting Activities and 
Krutetskii’s (1976) nine ways of thinking should be explored. 
This relationship was only cursorily referenced in this publica-
tion, and it deserves further attention from an empirical perspec-
tive. MEAs provide great potential for challenging academically 
advanced students, and if it could be illustrated that they provide 
promise through research, they would warrant significant con-
sideration among educators of academically advanced students. 

As a final area for future research, it would behoove educa-
tional psychologists to use MEAs as an instrument to identify 
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academically advanced students. In the second suggestion, a cry 
for formalized instruments was echoed. In the third sugges-
tion, it was suggested that MEAs be used with academically 
advanced students. To incorporate the two areas, a fourth sug-
gestion was created, which is to use MEAs to identify academi-
cally advanced mathematicians. How this could be done remains 
somewhat unclear, but potential does exist if this notion could 
be conceptualized.

Conclusion

The status quo can be maintained and academically advanced 
mathematics students can continue to be educated in the manner 
in which they have for several decades. However, this mode of 
instruction is not likely to adequately challenge the most prom-
ising students. Moreover, a case has been outlined for taking a 
close look at teaching and learning practices in elementary class-
rooms. Given the fact that curricula often greatly inform teach-
ing and learning practices, perhaps the best place to start is by 
carefully analyzing mathematics curricula. The curricula in many 
classrooms may have an overreliance on routine procedures and 
low-level skills. This overreliance may come through the use of 
textbook-based problems, which are likely mathematical exercises 
or word or story problems. In short, these types of tasks often 
have a focus on low-level thinking skills, which are not often a 
need for academically advanced students in mathematics. 

To fully optimize learning situations for such students, high-
level mathematical problems must be employed. In employing 
HOT mathematical tasks, cognitive demands of academically 
advanced students have a greater likelihood of being met rela-
tive to using LOT mathematical tasks. MEAs appear to be one 
such type of supplementary curriculum that has shown promise 
in adequately challenging academically advanced students, and 
they appear to have strong relationships to the problems used in 
high-performing countries such as Singapore, China, and Japan 
(Leung, 2005). 
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